Shallow Methods for Named Entity Coreference Resolution

نویسندگان

  • Kalina Bontcheva
  • Marin Dimitrov
  • Diana Maynard
  • Valentin Tablan
  • Hamish Cunningham
چکیده

Nous nous intéressons dans cet article aux méthodes superficielles de résolution d’anaphores et de construction des chaı̂nes de référence, que nous avons développées comme modules du système d’extraction d’information ANNIE. La module ”orthomatcher” traite la coréférence orthographique des noms propres et le module de résolution d’anaphores traite les anaphores pronominales dont les antécédents sont des entités nommées. Tous les deux construisent des chaı̂nes de référence, i.e. elles identifient des équivalences entre les entités nommées qui apparaissent dans le texte. Les résultats de précision et de rappel pour l’orthomatcher sont 96/93% pour l’orthomatcher et 66/46% pour la résolution d’anaphores pronominaux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

Corefrence resolution with deep learning in the Persian Labnguage

Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...

متن کامل

A Light-weight Approach to Coreference Resolution for Named Entities in Text

This paper presents a lightweight approach to pronoun resolution in the case when the antecedent is a named entity. It falls under the category of the so-called ‘knowledge poor’ approaches that do not rely extensively on linguistic or domain knowledge. We provide a practical implementation of this approach as a component of the General Architecture for Text Engineering (GATE). The results of th...

متن کامل

Coreference Resolution of Named Entities and Noun Phrases in Web Pages

An approach for intra-document coreference resolution of named entities and noun phrases is proposed. This approach is a knowledgepoor, integrated approach to coreference resolution which relies on syntactic, discourse and semantic information (using WordNet). Our approach is also intended to exploit the structural features of web pages for the purposes of discourse analysis. This research is i...

متن کامل

Joint Coreference Resolution and Named-Entity Linking with Multi-Pass Sieves

Many errors in coreference resolution come from semantic mismatches due to inadequate world knowledge. Errors in named-entity linking (NEL), on the other hand, are often caused by superficial modeling of entity context. This paper demonstrates that these two tasks are complementary. We introduce NECO, a new model for named entity linking and coreference resolution, which solves both problems jo...

متن کامل

Adapting an Entity Centric Model for Portuguese Coreference Resolution

This paper presents the adaptation of an Entity Centric Model for Portuguese coreference resolution, considering 10 named entity categories. The model was evaluated on named e using the HAREM Portuguese corpus and the results are 81.0% of precision and 58.3% of recall overall, the resulting system is freely available.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002